sábado, 11 de abril de 2015

EVALUACIÓN ESTADÍSTICA

ESTADISTICA
I.De las siguientes variables indica cuáles son discretas y cuales continúas.
1.      1 Número de acciones vendidas cada día en la Bolsa.
2.      2Temperaturas registradas cada hora en un observatorio.
3.      3 Período de duración de un automóvil.
4.      4 El diámetro de las ruedas de varios coches.
5.      5 Número de hijos de 50 familias.
6.      6 Censo anual de los españoles.
II.COMPLETA LAS DEFINICIONES
1.      Una                         es el conjunto de todos los elementos a los que se somete a un estudio estadístico.
2.      Un                        o unidad estadística es cada uno de los elementos que componen la población.
3.      Una                  es un conjunto representativo de la población de referencia, el número de individuos de una muestra es menor que el de la población.
4.      El                      es la reunión de datos que se desea estudiar, obtenidos de una proporción reducida y representativa de la población.
5.      Un               es cada uno de los distintos resultados que se pueden obtener en un estudio estadístico. Si lanzamos una moneda al aire 5 veces obtenemos dos valores: cara y cruz.
6.      Un         es cada uno de los valores que se ha obtenido al realizar un estudio estadístico. Si lanzamos una moneda al aire 5 veces obtenemos 5 datos: cara, cara, cruz, cara, cruz.
7.      1. Una variable                        es cada una de las características o cualidades que poseen los individuos de una población. Completa
8.      2. Las variables                      se refieren a características o cualidades que no pueden ser medidas con números. Podemos distinguir dos tipos:
3. Variable cualitativa                              y ______________                               
1.      4. Una variable cualitativa_______         presenta modalidades no numéricas que no admiten un criterio de orden.
2.      5. Una variable cualitativa                 presenta modalidades no numéricas, en las que existe un orden.
III.De las siguientes variables indica cuáles son nominales, ordinales
1.      El estado civil, con las siguientes modalidades: soltero, casado, separado, divorciado y viudo.
2.      La nota en un examen: suspenso, aprobado, notable, sobresaliente.
3.      Puesto conseguido en una prueba deportiva: 1º, 2º, 3º, ...
4.      Medallas de una prueba deportiva: oro, plata, bronce.
5.      Una variable                es la que se expresa mediante un número, por tanto se pueden realizar operaciones aritméticas con ella. Podemos distinguir dos tipos:
6.      Una variable               es aquella que toma valores aislados, es decir no admite valores intermedios entre dos valores específicos. Por ejemplo:
7.      IV.Una variable                      es aquella que puede tomar valores comprendidos entre dos números
De las siguientes variables indica cuáles son discretas y continuas.
1.      El número de hermanos de 5 amigos: 2, 1, 0, 1, 3.

2.      La altura de los 5 amigos: 1.73, 1.82, 1.77, 1.69, 1.75. 

DISTRIBUCIÓN DE FRECUENCIAS EN ESTADISTICA

DEFINICIONES DE ESTADÍSTICA
De las siguientes variables indica cuáles son discretas y cuales continúas.
1 Número de acciones vendidas cada día en la Bolsa.
Discreta
2Temperaturas registradas cada hora en un observatorio.
Continua
3 Período de duración de un automóvil.
Continua
4 El diámetro de las ruedas de varios coches.
Continua
5 Número de hijos de 50 familias.
Discreta
6 Censo anual de los españoles.
Distribución de frecuencias
La distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos, asignando a cada dato su frecuencia correspondiente.
Tipos de frecuencias
Frecuencia absoluta
La frecuencia absoluta es el número de veces que aparece un determinado valor en un estudio estadístico.
Se representa por fi.
La suma de las frecuencias absolutas es igual al número total de datos, que se representa por N.
Para indicar resumidamente estas sumas se utiliza la letra griega Σ (sigma mayúscula) que se lee suma o sumatoria.
Frecuencia relativa
La frecuencia relativa es el cociente entre la frecuencia absoluta de un determinado valor y el número total de datos.
Se puede expresar en tantos por ciento y se representa por ni.
La suma de las frecuencias relativas es igual a 1.
Frecuencia acumulada
La frecuencia acumulada es la suma de las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado.
Se representa por Fi.
Frecuencia relativa acumulada
La frecuencia relativa acumulada es el cociente entre la frecuencia acumulada de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento.
Ejemplo
Durante el mes de julio, en una ciudad se han registrado las siguientes temperaturas máximas:
32, 31, 28, 29, 33, 32, 31, 30, 31, 31, 27, 28, 29, 30, 32, 31, 31, 30, 30, 29, 29, 30, 30, 31, 30, 31, 34, 33, 33, 29, 29.
En la primera columna de la tabla colocamos la variable ordenada de menor a mayor, en la segunda hacemos el recuento y en la tercera anotamos la frecuencia absoluta.
xi
Recuento
fi
Fi
ni
Ni
27
I
1
1
0.032
0.032
28
II
2
3
0.065
0.097
29
6
9
0.194
0.290
30
7
16
0.226
0.516
31
8
24
0.258
0.774
32
III
3
27
0.097
0.871
33
III
3
30
0.097
0.968
34
I
1
31
0.032
1


31

1

Este tipo de tablas de frecuencias se utiliza con variables discretas.

Distribución de frecuencias agrupadas
La distribución de frecuencias agrupadas o tabla con datos agrupados se emplea si las variables toman un número grande de valores o la variable es continua.
Se agrupan los valores en intervalos que tengan la misma amplitud denominados clases. A cada clase se le asigna su frecuencia correspondiente.
Límites de la clase
Cada clase está delimitada por el límite inferior de la clase y el límite superior de la clase.
Amplitud de la clase
La amplitud de la clase es la diferencia entre el límite superior e inferior de la clase.
Marca de clase
La marca de clase es el punto medio de cada intervalo y es el valor que representa a todo el intervalo para el cálculo de algunos parámetros.
Construcción de una tabla de datos agrupados
3, 15, 24, 28, 33, 35, 38, 42, 43, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, 13.
1º Se localizan los valores menor y mayor de la distribución. En este caso son 3 y 48.
2º Se restan y se busca un número entero un poco mayor que la diferencia y que sea divisible por el número de intervalos queramos establecer.
Es conveniente que el número de intervalos oscile entre 6 y 15.
En este caso, 48 - 3 = 45, incrementamos el número hasta 50 : 5 = 10 intervalos.
Se forman los intervalos teniendo presente que el límite inferior de una clase pertenece al intervalo, pero el límite superior no pertenece intervalo, se cuenta en el siguiente intervalo.

ci
fi
Fi
ni
Ni
[0, 5)
2.5
1
1
0.025
0.025
[5, 10)
7.5
1
2
0.025
0.050
[10, 15)
12.5
3
5
0.075
0.125
[15, 20)
17.5
3
8
0.075
0.200
[20, 25)
22.5
3
11
0.075
0.275
[25, 30)
27.5
6
17
0.150
0.425
[30, 35)
32.5
7
24
0.175
0.600
[35, 40)
37.5
10
34
0.250
0.850
[40, 45)
42.5
4
38
0.100
0.950
[45, 50)
47.5
2
40
0.050
1


40

1


Definición de Estadística

La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones.
Un estudio estadístico consta de las siguientes fases:
Recogida de datos.
Organización y representación de datos.
Análisis de datos.
Obtención de conclusiones.

Conceptos de Estadística

Población

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Individuo

Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Muestra

Una muestra es un conjunto representativo de la población de referencia, el número de individuos de una muestra es menor que el de la población.

Muestreo

El muestreo es la reunión de datos que se desea estudiar, obtenidos de una proporción reducida y representativa de la población.

Valor

Un valor es cada uno de los distintos resultados que se pueden obtener en un estudio estadístico. Si lanzamos una moneda al aire 5 veces obtenemos dos valores: cara y cruz.

Dato

Un dato es cada uno de los valores que se ha obtenido al realizar un estudio estadístico. Si lanzamos una moneda al aire 5 veces obtenemos 5 datos: cara, cara, cruz, cara, cruz.
Diagrama de barras
Un diagrama de barras se utiliza para de presentar datos cualitativos o datos cuantitativos de tipo discreto.
Se representan sobre unos ejes de coordenadas, en el eje de abscisas se colocan los valores de la variable, y sobre el eje de ordenadas las frecuencias absolutas o relativas o acumuladas.
Los datos se representan mediante barras de una altura proporcional a la frecuencia.
Ejemplo
Un estudio hecho al conjunto de los 20 alumnos de una clase para determinar su grupo sanguíneo ha dado el siguiente resultado:

Grupo sanguíneo
fi
A
6
B
4
AB
1
0
9

20


Polígonos de frecuencia
Un polígono de frecuencias se forma uniendo los extremos de las barras mediante segmentos.
También se puede realizar trazando los puntos que representan las frecuencias y uniéndolos mediante segmentos.
Ejemplo
Las temperaturas en un día de otoño de una ciudad han sufrido las siguientes variaciones:

Hora
Temperatura
6
9
12°
12
14°
15
11°
18
12°
21
10°
24


Un diagrama de sectores se puede utilizar para todo tipo de variables, pero se usa frecuentemente para las variables cualitativas.
Los datos se representan en un círculo, de modo que el ángulo de cada sector es proporcional a la frecuencia absoluta correspondiente.
El diagrama circular se construye con la ayuda de un transportador de ángulos.
Ejemplo
En una clase de 30 alumnos, 12 juegan a baloncesto, 3 practican la natación, 9 juegan al fútbol y el resto no practica ningún deporte.


Alumnos
Ángulo
Baloncesto
12
144°
Natación
3
36°
Fútbol
9
108°
Sin deporte
6
72°
Total
30
360°

Un histograma es una representación gráfica de una variable en forma de barras.
Se utilizan para variables continuas o para variables discretas, con un gran número de datos, y que se han agrupado en clases.
En el eje abscisas se construyen unos rectángulos que tienen por base la amplitud del intervalo, y por altura, la frecuencia absoluta de cada intervalo.
La superficie de cada barra es proporcional a la frecuencia de los valores representados.
Polígono de frecuencia
Para construir el polígono de frecuencia se toma la marca de clase que coincide con el punto medio de cada rectángulo.
Ejemplo
El peso de 65 personas adultas viene dado por la siguiente tabla:


ci
fi
Fi
[50, 60)
55
8
8
[60, 70)
65
10
18
[70, 80)
75
16
34
[80, 90)
85
14
48
[90, 100)
95
10
58
[100, 110)
105
5
63
[110, 120)
115
2
65


65